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100%

Read i
Speech Conversational |
B;:aéde‘:;ft ; .‘\Slﬁ\t(tboard Cellular
RM 20k !
8 Poor Switchboard
= Microphones I witchboar
© ATIS - |
Tk Nois !
. y l
g 10% ;
) 20k E
© |
So. 5k \- :
3 Clean i
» Read speech (vocabulary: IK, 5K, 20K)
* Broadcast speech
* Conversational speech
1% 1988 ' 1989 ' 1990 ' 1991 '1992'1993 '1994 '1995 ' 1996 ' 1997 '1998' 1999 izooo '2001 2002 '2003 '2004 2005 ' 2006

year of annual evaluation

Li Deng, Xuedong Huang. Challenges in adopting speech recognition, Communications of the ACM, Jan 2004.




ASR brief history

HMM * F Jelinek, “Continuous speech recognition by statistical methods”, Proc. of the IEEE, 1976.
e J. Baker, “The DRAGON system--An overview”, T-ASSP, 1975.

GMM e B.H. Juang, “Maximume-likelihood estimation for mixture multivariate stochastic observations of Markov
chains”, AT&T Technical Journal, 1985.

N-gram, * F Jelinek & R.L. Mercer, “Interpolated estimation of Markov source parameters from sparse data”, Proc.
Smoothing Workshop on Pattern Recognition in Practice, 1980.
* F Jelinek, “The development of an Experimental Discrete Dictation Recognizer”, Proc. of the IEEE, 1985.

Tree based state tying °* S. Young, J.J. Odell, P.C. Woodland, “Tree-based state tying for high accuracy acoustic modeling”, HLT
workshop, 1994.

MAP, * C.H. Lee, C.H. Lin, B.H. Juang, “A study on speaker adaptation of the parameters of continuous density
MLLR hidden Markov models”, T-IP, 1991.
 C.J. Leggetter & P.C. Woodland, “Maximum likelihood linear regression for speaker adaptation of continuous
density hidden Markov models”, Computer Speech and Language, 1995.

fMLLR, Speaker « M.J.F. Gales, “Maximum likelihood linear transformations for HMM-based speech recognition”, Computer
adaptive training Speech and Language, 1998.
WEST M. Mohri. Finite-State Transducers in Language and Speech Processing. Computational Linguistics, 1997.

M. Mohri, F. Pereira, and M. Riley, “Speech Recognition with Weighted Finite-State Transducers”, 2008.

Discriminative
Training, MMI, MPE

D. Povey, “Discriminative training for large vocabulary speech recognition”, Ph.D. dissertation, 2003.

Zhijian Ou, Invited Talk at National Conference on Acoustics, 2021/3/29, Shanghai



100%

10%

word error rate

1%

Progress on Switchboard (Hub5’00 SWB testset*)
GMM DNN
80
Read
SPEECh WSJ Conversatig “High-performance” system
\ Speech 40
Broadcast |
Speech CUED Hub5'00
RM 20k Poor 20 evaluation system -=Machine
ATIS Microphones \ —Human
Ik - Noisy ¢ CD-DNN
IBM EARS RT'04 Joint
10 evaluation system \CNN/ DNN
20k Joint %
RNN/CNN L RNN+LSTM+VGG
X ‘ . ‘ ‘ , . LSTM+ResNet AM
Bk 5 ! ! ! ! ! ' ! ! ! ! ighway LSTM LM

Clean 5 P RN PN DD L AN Y A

O O &) &) Q Q Q Q Q N N N N

FELL LT TS S S S

* Read speech (vocabulary: IK, 5K, 20K)

* Broadcast speech

» Conversational speech

1988 ' 1989 ' 1990 ' 1991 '1992 1993 '1994 ' 1995 '1996 ' 1997 '1998' 1999 '2000 '2001 2002 '2003 2004 2005 ' 2006

year of annual evaluation

Li Deng, Xuedong Huang. Challenges in adopting speech recognition, Communications of the ACM, Jan 2004.

Man vs. machine in conversational
speech recognition, George Saon,
ASRU2017 Invited talk.




ASR brief history

DNN-HMM

NN-LM

CTC

Attention seq2seq

RNN Transducer

Transformer

CRF

A. Mohamed, G. Dahl, and G. Hinton, “Deep belief networks for phone recognition”, NIPS Workshop Deep
Learning for Speech Recognition and Related Applications, 2009.

G. Dahl, et al, “Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition”, T-ASLP, 2012.
F. Seide, G. Li, and D. Yu, “Conversational speech transcription using context-dependent deep neural networks”, Interspeech, 2011.
D. Povey, et al, "Purely sequence-trained neural networks for ASR based on lattice-free MMI", Interspeech 2016.

Bengio, et al, “A Neural Probabilistic Language Model”, NIPS, 2001.

Mikolov, et al, "Recurrent neural network based language model", Interspeech, 2010.

A. Graves, et al, “Connectionist temporal classification: Labelling unsegmented sequence data with recurrent
neural networks”, ICML, 2006.

H. Sak, et al, “Learning acoustic frame labeling for speech recognition with recurrent networks”, ICASSP, 2015.
Y. Miao, et al, “EESEN: End-to-end speech recognition using deep RNN models and WFST-based decoding”, ASRU, 2015.

D. Bahdanau, et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015.
J. K. Chorowski, et al, “Attention-based models for speech recognition,” NIPS, 2015.
W. Chan, et al @ google, “Listen, attend and spell: A neural network for large vocabulary conversational speech recognition”, ICASSP, 2016.

A. Graves, “Sequence transduction with recurrent neural networks,” ICML 2012 Workshop on

Representation Learning.
E. Battenberg, et al @ Baidu, “Exploring neural transducers for end-to-end speech recognition”, ASRU 2017.
K. Rao, et al @ Google, “Exploring architectures, data and units for streaming end-to-end speech recognition with RNN-transducer”, ASRU 2017

A. Vaswani, et al @ google, "Attention Is All You Need", NIPS, 2017.
H. Xiang, Z. Ou. "CRF-based Single-stage Acoustic Modeling with CTC Topology", ICASSP, 2019.

Zhijian Ou, Invited Talk at National Conference on Acoustics, 2021/3/29, Shanghai



New-generation ASR

noises,
HMM DNN-HMM Data-efficient < accents,

languages,
GMM NN-LM AutoML scenarios,
N-gram, CTC Trustworthy Al domains,
Smoothing

Attention seq2seq
Tree based state tying

RNN Transducer
MAP,
MLLR Transformer
fMLLR, Speaker CRF
adaptive training N
WFST .

Greater representational capability of DNNs
Discriminative * Larger amounts of labeled speech data for supervised training
ULl bty A2 e Powerful hardware such GPUs

MEE, "S=RIEERIIRAR | £fEFFKSR, 2021/3/29, Eig 7




ASR: Basics

ASR (Automatic Speech Recognition) is a seq. discriminative problem

» For acoustic observations x = x4, -+, x7, find the most likely labels y £ y4,---, v,

1. How to obtain p(y | x)

2. How to handle alighment, since L # T

Labels
y L+T
AFER EERE I
AM LM Y1
NJNNJW“ ‘ ’ N YR :
= _Pxly) P(y) -
Speech signal x (ylx) = M Label sequence y YL

Observations x = x4 -*- xp

Example of alignment



GMM-HMM: state transitions

Acoustic HMM states  Phonetic context-dependency Lexicon Language model
it i t
vy QQAQ, . 0%0-0
) t-1y+n t
tly+ng Q»Q»Q» iy 4t-iy+n9 T 0500
f-iy+l Q,Q,Q, Ifl:llzI if'iyﬂ Ifl:llzI 900d @ 49 L9-9@ E[Ilj
syl ARG, sy

we OHOH0

2 /

State transitions in T are determined by a state transition graph (WFST), constrained by T

l:<eps=>/0
1;jill/0.405
m:jim/1.098

f:fled/2.284

iy:read/0.805
ow:wrote/2.237

A path T £ 1, -, w7 uniquely determines a label sequence vy, but not vice versa.
1 T

e



WEST

 WFSTs (weighted finite-state transducers) for Viterbi decoding
= Pioneered by AT&T in late 1990’s [Mohri et al., 2008]

Acoustic HMMs: H  Phonetic context-dependency: C Lexicon: L Language model: G

/e &
vy e x
S Xxey XV X - ‘ W2.W2/p(W2 | wl) g
( - o - XXy &
(& Cawe x x¥xx ~— = yx = o xe >
XX — ¥y r — .
\ XY g v YWY X
! 7

i), o
\_ /
Composed and optimized into a single WFST
N = min(det(H odet(Codet(LoG))))
which represents p(m;,¢|m;) and is used in Viterbi decoder.
Well implemented in Kaldi toolkit https://github.com/kaldi-asr/kaldi
11

M. Mohri, et al., "Speech Recognition with Weighted Finite-State Transducers", 2008.


https://github.com/kaldi-asr/kaldi

DN N-HMM .2 Classic

e ASR state-of-the-art: DNNs of various network architectures (MLP, LSTM, CNN,
Transformer, etc.), initially DNN-HMM

Transition Probabilities

State posterior prob.
estimated from the DNN, which needs Can be ignored.

frame-level alignments i
p(xmntlxtw .
t t —_— ht.\!i — Observation
p (T[t) | \V.u Probabilities
~S—m — pM
State prior prob. DNN
estimated from the training data h" -
' ot
e Conventionally, multi-stage e v ~—
monophone GMM-HMM T U, P L %Ob .
: : T £ i S L S Observation
- alignment & triphone tree building PR ae mlm 2l IR e 8
— alignment
> triphone DNN-HMM G. Dahl, et al., "Context-dependent pre-trained deep neural networks for 19

large-vocabulary speech recognition", TASLP, 2012.
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Advancing to end-to-end ASR: motivation

 End-to-end in the sense that:

* Eliminate the construction of GMM-HMMSs and phonetic decision-trees, and can be
trained from scratch (flat-start or single-stage)

* In @ more strict/ambitious sense:

 Remove the need for a Pronunciation Lexicon (ProLex) and, even further, train the
acoustic and language models jointly rather than separately

* Trained to optimize criteria that are related to the final evaluation metric that we are
interested in (typically, word error rate)

* Motivation

* Simplify system pipeline, reduce expert knowledge and labor (such as compiling the
ProLex, building phonetic decision trees)

14



Advancing to end-to-end ASR: techniques

ASR is a sequence discriminative problem

» For acoustic observations x = x4, -+, x7, find the most likely labels y = y4, -, y;

1. How to obtain p(y | x) :

2. How to handle alighment, since L # T

Need a differentiable sequence-
level loss of mapping acoustic
sequence y to label sequence x

N

* Explicitly: introduce hidden state sequence m, as in
Connectionist Temporal Classification (CTC), RNN
Transducer (RNNT), Conditional Random Field (CRF)

* Implicitly: as in Attention based Encoder-Decoder
(AED)

Labels

y
|

V1

YL

L#+T

Observations x = x4 -- xp
Example of explicit alignment

15




History

DNN-HMM AED
(2009) (2015)
- o——o —
GMM-HMM CTC RNN-T LF-MMI  CTC-CRF
(IBM, AT&T, 1980s) (2006) (2012) (2016)  (2019)

* [CTC] Graves, et al., “Connectionist Temporal Classification: Labelling unsegmented sequence data with
RNNs”, ICML 2006.

 [DNN-HMM] A. Mohamed, et al., “Deep belief networks for phone recognition”, NIPS Workshop Deep
Learning for Speech Recognition and Related Applications, 20009.

 [RNNT] A. Graves, “Sequence transduction with recurrent neural networks”, ICML 2012 Workshop on
Representation Learning.

* [AED] D. Bahdanau, et al., “Neural machine translation by jointly learning to align and translate”, ICLR 2015.

* [LF-MMI] D. Povey, et al., "Purely sequence-trained neural networks for ASR based on lattice-free MMI",
INTERSPEECH 2016.

* [CTC-CRF] Xiang&Ou. "CRF-based Single-stage Acoustic Modeling with CTC Topology", ICASSP, 2019.

16



CTC: introducing blank symbol

* Motivation: training p(y | x) without the need for frame-level alignments
between the acoustics x and the transcripts y

» Introduce a state sequence ™ £ my, -, wr, Where m; € the-alphabet-of-labels U <b>

p (11 |x) p(me|x) p(mr|x) -
A A A Linear&Softmax Layer
Path posterior T State posterior zy = Wh, € RK*1
p(m|x) = | [p(melx) . . - :
t=1 = k|x) = 2PED_ s ke e
"} S A e Rl

_ prob. of observing label k at time t
Acoustic Encoder :
The un-normalized outputs z; are
le xt x/; often called logits.

Graves, et al., “Connectionist Temporal Classification: Labelling unsegmented sequence data with RNNs”, ICML 2006. 17



CTC topology

= State topology refers to the state transition structure in 1T, which basically determines

the mapping B.rc frommtoy

Path posterior

CTC topology : a mapping By maps Tto y by
1. reducing repetitive symbols to a single symbol;

2. removing all blank symbols.
B(—CC — —AA—-T —) = CAT

T
p(eln) = | [prlo
t=1

Label-seq posterior

p(y|x) = 2 p(7t|x)

O

o O
o o
o O
[
O

T-2 T-1 T

1: Berc(m)=y
Summing over all possible paths, which map to y

B B cBBaaasB
B

B t
B cec B aZBRB B t

B cBBaBBT&tt?B

18



: .3 CTC
CTC: shortcoming
_
o _ . RNN-T
* Conditional independence assumption | Overcome > <
r _ CTC-CRF
p(l ) = | | pGrlo)
t=1
p(71|x) p(:|x) p(mr|x)
T 00 e () e
Us
) 7 ) f
h1 ht hT
A A A
Acoustic Encoder X
T 7 7
0 K.

Computational flow Graphical Model Representation
19
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Motivation: data-efficient end2end

* End-to-end system:

* Eliminate the construction of GMM-HMMSs and phonetic decision-trees, and can be
trained from scratch (flat-start or single-stage)

* In @ more strict/ambitious sense:

* Remove the need for a pronunciation lexicon and, even further, train the acoustic and
language models jointly rather than separately

e Data-hungry

We need data-efficient end2end speech recognition, which uses a separate
language model (LM) with or without a pronunciation lexicon.

= Text corpus for language modeling are cheaply available.

= Data-efficient

21
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Motivation
SRR EEIData-efficiency
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CTCvs CTC-CRF

CTC

CTC-CRF

p(Y|x) = 2 r.3(m)=y P(7T|X), using CTC topology B

State Independence

T
p(lx;0) = | [prln)
t=1

o ®(mx;6)

e 9050
. L Node potential, by NN

p(m|x; 0) =

#(m,x;0) = ) logp(melx) + logpuu (B()

“——Edge potential,
by n-gram denominator LM of labels, like in LF-MMI

dlog p(y|x; 6) dlog p(r|x; 6)

FY: = Epmiy.x0) [ PY:

dlog p(ylx; 0)

00

dp(m, x; 0) E dp(m', x; 6)
- |

— “p(rlxy;0)

25



Related work

Attention Seq2Seq RNN-T

DNN-HMM (Bengio NIPS15; (Graves ICMLw12;

(Hinton NIPSW09; Microsoft IS11) ~ Google IC16) Baidu, Google ASRU17)
GMM-HMM CTC CTC-CRF
(IBM, AT&T, 1980s) (Graves ICMLO6; Google IC15) (Xiang&Ou I1C19)

& RNN-T
A0 BIME wE {nt},fél:zm@ R {yl}%ﬁl FIMSE 06 (r ) BB E SIS R

'@ Y AR EEFERBEFAERELM, CTC-CRFGBMFHIE !

"@ RIS WS S T R T IE SRS,
FHERIE LSRR 7 5 SRR |
?E:jj CTC-CRF




Decoding: LM integration with WFSTs

* Best-path-decoding max p(|x)
* Prefix-search-decoding manp(ny)

* Incorporate lexicon and LM to improve best-path-decoding
mﬁx p (7| x) LMExternai(Bere (10))

WFST representing CTC topology: T Lexicon: L

Language model: G

Composed and optimized into a single WFST



Experiments

* We conduct our experiments on three benchmark datasets:

e WSJ 80 hours
e Switchboard 300 hours
* Librispeech 1000 hours

e Acoustic model: 6 layer BLSTM with 320 hidden dim, 13M parameters

* Adam optimizer with an initial learning rate of 0.001, decreased to 0.0001 when
cv loss does not decrease

* Implemented with Pytorch.
* Objective function (use the CTC objective function to help convergences):

Jderc—crr + Adcrc

* Decoding score function (use word-based language models, WFST based
decoding):

logp(l|x) + Blogpy (D)

H. Xiang, Z. Ou. "CRF-based Single-stage Acoustic Modeling with CTC Topology", ICASSP, 2019.
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Experiments (Comparison with CTC, phone based)

WSJ 80h
Model Unit dev93 eval92
CTC Mono-phone 4-gram N 10.81% 7.02%I 44.4%
CTC-CRF Mono-phone 4-gram N 6.24% 3.90%‘1’
Switchboard 300h
Model Unit LM SP SW CH
CTC Mono-phone A-gram N 12.9%I 1479 23.6% I 11%
CTC-CRF Mono-phone 4-gram N 11.0%‘1' 21.0% ‘l'

Librispeech 1000h

CTC

SP

Dev Clean

Dev Other

Mono-phone

4-gram

4.64%

13.23%

Test Clean
5.06%]

Test Other

13.68%
‘ 2.1%

CTC-CRF

Mono-phone

4-gram

3.87%

10.28%

4.09%4")

70.65%

SP: speed perturbation for 3-fold data augmentation.

29



2021 SLT CHILDREN
SPEECH RECOGNITION CHALLENGE (CSRC)

oreanzer: (@) Fhzird @ dard O AMKE ) BERER &

* 400 hours of data, targeting to boost children speech recognition research.
* Evaluated on 10 hours of children’s reading and conversational speech.
* 3 baselines (Chain model, Transformer and CTC-CRF) are provided.

CER% 28.75 27.28 25.34

Fan Yu, Zhuoyuan Yao, Xiong Wang, Keyu An, Lei Xie, Zhijian Ou, Bo Liu, Xiulin Li, Guangiong Miao. The SLT 2021
children speech recognition challenge: Open datasets, rules and baselines. SLT 2021.
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HrEIEERA] (Hokkien ASR)
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Advancing CTC-CRF Based End-to-End Speech Recognition

with Wordpieces and Conformers
Huahuan Zheng, Wenjie Peng, Zhijian Ou and Jinsong Zhang, arXiv:2107.03007

40 ms rate

Basic Units of

Label Sequence

Labels

DHAE1TNIY1DHEROAH1VDHEH1M HHAE1

phoneme DKRAO1ISTDHAHOTHREH1ISHOW2LDSIH1

NSDHAHODAA1RKDEY1
character that _neither_of _them_had _cros
Jarapheme sed the threshold _since_the dar
k day_
subword that_neither_of them_ had_crossed the_
/wordpiece threshold _since_the dark day_
word that neither of them had crossed the threshold

since the dark day

Dropout

40 ms rate T

Linear

40 ms rate
-

Convolution
Subsampling

~
10 ms rate |

SpecAug

S

10 ms rate T

1
: kﬂuhi-Head Self Attentioﬂ I
|
1

Feed Forward Module

Feed Forward Module

¥ E

{ ™
\+ € )
.

“ 1
1

1/2 )(T :
| 1

1

1

—..J 1
L 1
0 I
\+ S/ :
] .

Convolution Module

T—/

1

N 1

[+ Je—— 1

N
I

Module

S

N
N o —
A

1
1/2 XT _ :
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Experiments (Comparison with SOTA)

Mandarin Aishell 1770h %CER
Model %CER

LF-MMI with i-vector [1] 7.43
Transformer [2] 6.7
CTC-CRF [3] 6.34
CTC-CRF (3-gram LM) 4.90
RNN-T by our implementation 4.82
U2 ++ [4] 5.19

K2, conformer MMI [5] 4.94

[1] D. Povey, A. Ghoshal, and et al, “The Kaldi speech recognition toolkit,” ASRU 2011.

[2] S. Karita, N. Chen, and et al, “A comparative study on transformer vs RNN in speech applications,” ASRU 2019.

[3] Keyu An, Hongyu Xiang, and Zhijian Ou, “CAT: A CTC-CRF based ASR toolkit bridging the hybrid and the end-to-end
approaches towards data efficiency and low latency,” INTERSPEECH 2020.

[4] U2++: Unified Two-pass Bidirectional End-to-end Model for Speech Recognition, arXiv 2106.05642

[5] https://github.com/k2-fsa/icefall/blob/master/egs/aishell/ASR/RESULTS.md



Experiments (Comparison with SOTA)

English Switchboard 300h %WER

Model

H#params

LM

unit

Eval2000

RNN-T, 2021 [10] 57 RNN LM char 6.4 13.4 9.9
Att. Conformer [9] 44.6 Trans. bpe 6.8 14.0 10.4 ¢
TDNN-F [11] - Trans.* triphone 7.2 14.4 10.8
TDNN-F [11] - Trans.** triphone 6.5 13.9 10.2 §

VGGBLSTM [2] 39.15 RNN LM monophone 8.8 17.4 [13.0]
Conformer 51.82 Trans. monophone 6.9 14.5 10.7 ¢
(This work) 51.85 Trans. wordpiece 7.2 14.8 11.1

* N-best rescoring, ** Iterative lattice rescoring

[2] “CAT: A CTC-CRF based ASR toolkit bridging the hybrid and the end-to-end approaches towards data efficiency and

low latency,” INTERSPEECH 2020.
[9] “Conformer: Convolution-augmented Transformer for Speech Recognition”, Interspeech 2020.
[10] “Advancing RNN transducer technology for speech recognition,” ICASSP 2021.

[11] “A parallelizable lattice rescoring strategy with neural language models,” ICASSP, 2021




Experiment results

* The CTC-CRF framework inherits the data-efficiency of the hybrid approach
and the simplicity of the end-to-end approach.

* CTC-CRF significantly outperforms regular CTC on a wide range of
benchmarks, and is on par with other state-of-the-art end-to-end models.

= English WSJ-80h, Switchboard-300h, Librispeech-1000h; Mandarin Aishell-170h;
Hokkien 100h; ...

* Flexibility
= Streaming ASR <- INTRESPEECH 2020
= Neural Architecture Search <- SLT 2021
= Children Speech Recognition <- SLT 2021
= Wordpieces, Conformer architectures
= Multilingual and Crosslingual <- ASRU2021

https://github.com/thu-spmi/cat ;-



https://github.com/thu-spmi/cat

HE




Section Content

1.Motivation
2.Related work
3.Method: JoinAP
4.Experiments

5.Conclusion

 Chengrui Zhu, Keyu An, Huahuan Zheng, Zhijian Ou. “Multilingual and Crosslingual
Speech Recognition using Phonological-Vector based Phone Embeddings”, ASRU 2021. 37



Motivation

* There are more than 7100 languages in the world, and most of them are
low-resourced languages.

* Multilingual speech recognition

» Training data from a number of languages (seen languages) are merged to train a
multilingual AM.

* Crosslingual speech recognition
= The target language is unseen in training the multilingual AM.
= |In few-shot setting , the AM can be finetuned on limited target language data.
= In zero-shot setting , the AM is directly used without finetuning*.

* Suppose that text corpus from the target language are available.
Intuitively, the key to successful multilingual and crosslingual recognition is
to promote the information sharing in multilingual training
and maximize the knowledge transferring from the well trained multilingual model to the model
for recognizing the utterances in the new language.

38



Universal Phone Set

TEHHIASRIES BHRARII—EASSHRERLRNE

THE INTERNATIONAL PHONETIC ALPHABET (revised to 2020)

CONSONANTS (PULMONIC)

* International Phonetic Alphabet (IPA), 1888

@®@ 2020 IPA

Bilabial |Labiodental| Dental | Alveolar |Postalveolar| Retroflex | Palatal Velar Uwvular ]’hur}'ngc.‘ﬂ Glottal
Plosive pb t d tdci kg qga ?
Nasal m I‘]_J ‘ n I"L ‘]‘1 l:] N [
Trill B ‘ - ‘ '

Tap or Flap
Fricative

Lateral
fricative

Approximant

Lateral,
approximant

¢ B

—_—
b |y (CST | IND | P |

. _

1]
|

J

1

|
$zZ|¢ i/ xy|x¥ h ¥

w |

L

R |

h A

Symbaols to the right in a cell are voiced, w the left are voiceless. Shaded areas denote articulations judged impossible.

CONSONANTS (NON-PULMONIC)

Clicks

Voiced implosives

Ejectives

@) Bilabial
| Dental

! {Postalveolar

6 Bilabial

d‘ Dental/alveolar

f Palatal

s
p Bilabial
t'.l

Examples:

Dentalfalveolar

+ Palatoalveolar

|| Alveolar lateral

d Velar

k’ Velar

d Uvular

S!

Alveolar fricative

OTHER SYMBOLS

M\ Voiceless labial-velar fricative
W Voiced labial-velar approximant
q Voiced labial-palatal approximant
H Vaoiceless epiglottal fricative

9 Voiced epiglonal fricative

? Epiglottal plosive

DIACRITICS

G & Alveolo-palatal fricatives

.l Voiced alveolar lateral flap
ﬁ Simulianeous j. and X

Affricates and double articulations
can be represented by two svmbols
joined by a tie bar if necessary.

VOWELS

Close

Close-mid

Open-mid

Open

Front

ley

Y
e 0

Central

tett

940

Back
eu
V]

Ye0

2
A\
Ee(E 346 AeD

2 v

Qe E

AeD

Where symbaols appear in pairs, the one
to the right represents a rounded vowel,

SUPRASEGMENTALS

Primary stress I
,founa't
| Secondary stress
+ Long [H
* Half-long e
- o
Extra-short c




Phonological features

e Often phones are seen as being the “atoms”

of speech.

But it is now widely accepted in phonology
that phones are decomposable into smaller,
more fundamental units, sharable across all
languages, called phonological (distinctive)
features.

Describe phones by phonological features

s Vowels

* vowel height
 vowel backness

s Consonants

* Place of articulation
* Manner of articulation

Phonological feature

&

syllabic
sonorant
consonantal
continuant
delayed release
lateral

nasal

strident

voice

spread glottis
constricted glottis
anterior
coronal
distributed labial
labial

high

low

back

round

velaric

tense

long

hitone

hireg

I + O I

I + + I

A A

| + O |

1 O I O I

I I + + I

I + O I

e

oo ! o

+

0

0

0

0
0

e

I + O I

I 1 + 1 O I O I

oo 4

1 + 1 + + I I I + O I I + I + I I

oo ! o

I 1 + 1 O I

oo ! o
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Phonological features: micro-decomposition of phones

* Like atoms could be split into nucleus and electrons, phones can be
expressed by phonological features.

Matter Speech
Atoms Phones
Periodic table of elements IPA table
Nucleus, electrons Phonological features
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Phonological features: promote information sharing

* Even language-specific phones are connected by using phonological features.

Spanish [talian

T O T | P Ty T 1 Sapapepeg 0,-,0,0

MM EEE s 2l WM MEEEEEE

€. +,+"a+7"'9"03+7'9"Oa'909'"9'9+,','9+a',0a0
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Related work

* Phonological features(PFs) have been applied in multilingual and crosslingual ASR

* Previous studies generally take a bottom-up approach,
and suffer from:

* The acoustic-to-PF extraction in a bottom-up way is itself
difficult.

* Do not provide a principled model to calculate the phone
probabilities for unseen phones from the new language
towards zero-shot crosslingual recognition.

Phone probabilities

t

Standard acoustic model

Feature concatenation, or
Model combination

Phonological feature posteriors
/I\voicing Thigh

Phonological feature extractor

T

Acoustic spectra
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From phonological features to phonological-vector

* Phonological-vector
= Encode each phonological feature by a 2-bit binary vector. (24PFs -> 48bits)

= Plus 3 bits to indicate <blk>, <spn>, <nsn>
= Phonological-vector: Total 51 bits
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Joining of Acoustics and Phonology (JoinAP)

e The JoinAP method

= DNN based acoustic feature extraction (bottom-up)
and phonology driven phone embedding (top-down)
are joined to calculate the logits.

* JoinAP-Linear

» Linear transformation of phonological-vector p; to define
the embedding vector for phone i:
e; = Apl (S IRH

e JoinAP-Nonlinear

= Apply nonlinear transformation, multilayered neural networks:

e; = A,0(A1p;) € RY

Phone

y

Phonological transformation

Phone embedding e;

|

Logits: z,; = eiTht

!

DNN output h;

!

DNN based feature extractor

!

Acoustic spectra
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Experiments

* Train multilingual AM on German, French, Spanish and Polish.
* Zero-shot and few-shot crosslingual ASR on Polish and Mandarin.

word IPA symbol phonological feature
—>| Phonetisaurus G2P > PanPhone e

e Use CTC-CRF based ASR toolkit, CAT

* Acoustic model: 3 layer VGGBLSTM with 1024 hidden dim

* Adam optimizer: with an initial learning rate of 0.001, decreased to 1/10 until less than 0.00001
* Dropout 0.5

Language Corpora #Phones Train Dev  Test
German  CommonVoice 40 6394 247 25.1
French CommonVoice 57 465.2 219 23.0
Spanish ~ CommonVoice 30 2464 249 25.6
[talian Common Voice 33 89.3 19.7 20.8
Polish CommonVoice 46 93.2 52 6.1
Mandarin AISHELIL-1 96 150.9 18.1 10.0




Experiments

* Multilingual experiments

Language | Flat-Phone Flat-Phone Flat-Phone | JoinAP-Linear JoinAP-Linear | JoinAP-Nonlinear JoinAP-Nonlinear
monolingual | w/o finetuning  finetuning | w/o finetuning finetuning w/o finetuning finetuning
German 13.09 14.36 12.42 13.72 12.45 13.97 12.64
French 18.96 22.73 18.91 22.73 19.54 22.88 19.62
Spanish 15.11 13.93 13.06 13.93 13.19 14.10 13.26
[talian 24.57 25.97 21.77 25.85 21.70 24.06 20.29
Average 17.93 19.25 16.54 19.06 16.72 18.75 16.45

* Language-degree of a phone: how many languages a phone appears

Language-degree

4 3 2 1
Language
German 18 6 8 8
French 18 6 7 26
Spanish 18 4 1 7
[talian 18 5 4 6

On average, both JoinAP-Nonlinear and JoinAP-Linear perform better than Flat-Phone,
and JoinAP-Nonlinear is the strongest.




Experiments

* Crosslingual experiments

= Polish: = Mandarin:
#Finetune Flat-Phone JoinAP-Linear JoinAP-Nonlinear " #Finetune  Flat-Phone  JoinAP-Linear  JoinAP-Nonlinear
0 33.15 35.73 31.80 0 97.10 89.51 88.41
10 minutes 8.70 7.50 8.10 | hour 25.39 25.21 24.86

= Statistics about Polish and Mandarin:

Language #Phones #Unseen phones
Polish 46 18
Mandarin 96 79

On average, both JoinAP-Nonlinear and JoinAP-Linear perform better than Flat-Phone,
and JoinAP-Nonlinear is the strongest.
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Experiments

* t-SNE map of Polish phone embeddings

(obtained from un-finetuned multilingual models)

(a) (b) (c)

(a) Flat phone embeddings, (b) JoinAP-Linear phone embeddings, (c) JoinAP- Nonlinear phone embeddings.
Consonants with the same manner of articulation
Consonants with the same place of articulation
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Section Conclusion

In the multilingual and crosslingual experiments, JoinAP-Nonlinear generally
performs better than JoinAP-Linear and the traditional flat-phone method on
average. The improvements for target language depend on its data amount and
language-degree.

Our JoinAP method provides a principled, data-efficent approach to
multilingual and crosslingual speech recognition.

Promising directions: exploring DNN based phonological transformation, and
pretraining over increasing number of languages.
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“WER we are and WER we think we are”

“The conclusions are clear: we are definitely not where we think we are in terms of
WERs (Word Error Rates).”

ASR CCC SWBD CallHome
ASR1 179 11.62 17.69
ASR2 192 1145 18.6
ASR3 16.5 10.2 15.85

Table 1: WER [%] comparison on benchmarks

e Test: three different state-of-the-art commercial ASR solutions
e Call Center Conversations (CCC)

 The commercial ASR systems in our evaluation achieve nearly double the error rates
(reported in the literatures) on both HUB’05 evaluation subsets.

Szymanski, et al., "WER we are and WER we think we are", EMNLP 2020.
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Summary

F—RIEERBIRARNE TR
v’ Data-efficient, AutoML, Trustworthy

HRENNSIES SIESEERE
» CTC-CRF: X#FpiZAIAMELM

noises,
accents,
languages,

scenarios,
domains, Fik\

D.a’Fa— AutoML
efficient
Trustworthy

- /R Frefl 7 i SE B3 Rh S nliR BRI A RE !

« O KEAN LR EIEEEUEAIKER
» JointAP: BAEEZF5E8I=F
- (BHZIESIGNEEREUUNREESIES

RARTERIER
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Thanks for your attention!
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